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The dynamics of a spatial soliton pulse and interactions under the presence of a linear periodic wave �PW�,
which dynamically induces a photonic lattice, is investigated. It is shown that appropriate selections of the
characteristic parameters of the PW result in different soliton propagation and interaction scenarios, suggesting
a reconfigurable soliton control mechanism. The quasiparticle perturbation method is utilized for providing a
dynamical system, governing the soliton parameters evolution, for single- and two-soliton propagation under
generic conditions for the PW. Results of the perturbation method are shown in good agreement with direct
numerical simulations.
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I. INTRODUCTION

Light propagation in nonlinear photonic lattices and
waveguide arrays is the subject of intense research interest in
recent years, from both the theoretical and the experimental
points of view �1,2�. The evolution of a soliton beam in a
photonic lattice or a waveguide array has a rich set of inter-
esting features that cannot be met in the case of homoge-
neous waveguides �3,4�. Such properties open a potential for
practical technological applications related to photon man-
agement and control in terms of controllable soliton steering
and switching �5–7�. Since the transverse structure of a non-
linear waveguide determines the soliton propagation charac-
teristics, an appropriately designed periodic transverse pat-
tern can efficiently control the beam evolution. However, this
“static” control mechanism could be improved further, if the
transverse structure of the waveguide is determined “dy-
namically” by a light source. Due to the intensity-dependent
refractive index of a nonlinear waveguide, it is possible to
use a control signal in order to modulate periodically the
refractive index of the medium �8–13�. This approach has the
benefit of dynamically reconfigurable control of soliton
beams. On the other hand, the control signal can also be used
for the dynamical modification of the interactions between
solitons propagating in the same waveguide.

In this work, we study soliton dynamics and interactions
under the presence of a linear dispersive periodic wave
�PW�, which dynamically modulates the nonlinear wave-
guide through the intensity-dependent refractive index. The
underlying model of soliton propagation in a Kerr-type me-
dium is the nonlinear Schrodinger �NLS� equation,

i
�u

�Z
+

1

2

�2u

�X2 + �u�2u = 0, �1�

where X and Z are the transverse and the longitudinal dimen-
sions normalized to the characteristic size of beam and to the
diffraction distance, correspondingly, while u is the normal-
ized beam amplitude.

We will show that even a small amplitude PW can signifi-
cantly affect the soliton evolution, depending strongly on the
relative parameters of both waves, and that appropriate
choices of the parameter set of the control signal can result in

desirable soliton propagation characteristics. The quasiparti-
cle perturbation method, employed in this work, extends the
results of previous studies of single-soliton dynamics in pho-
tonic lattices by considering generic periodic profiles for the
PW, instead of plane wave �purely sinusoidal� profiles
�14,15�, and also by taking into account the comparable
length scales between the soliton width and the PW period
�16–18�. The latter is of crucial importance, since as shown
in Refs. �14,15�, the case of comparable soliton width and
PW period is particularly effective for soliton steering. The
limiting cases of different length scales, corresponding to
very narrow and wide beams, are included as special cases in
our general approach. Moreover, the perturbation method is
extended in order to study soliton interactions under the pres-
ence of the PW, resulting in a dynamical system describing
the interplay between the mutual soliton interaction and the
effect of the underlying PW. It is also shown that the evolu-
tion scenario of two initially well-separated solitons is
strongly determined by the PW. The presence of the latter
can either enhance or reduce the interaction between them.
Results of the perturbation method for both single- and two-
soliton dynamics under the presence of a PW, are compared.
Good agreement with direct numerical simulations of Eq. �1�
is demonstrated.

II. SINGLE-SOLITON DYNAMICS

The NLS Eq. �1� has the well-known bright soliton solu-
tion

us�X,Z� = � sech���X + �Z − X0��exp�− i�X + i�� , �2�

where � and � are the beam amplitude and transverse veloc-
ity, respectively, X0 the initial beam center, and �=1/2��2

−�2�Z.
On the other hand, a low amplitude PW having the fol-

lowing Fourier expansion

upw�X,Z� = �
n=−�

+�

an exp�− i�knX + �1/2�kn
2Z + �n�� , �3�

is a solution of the linear Schrodinger equation, where the
nonlinear term is considered negligible. Following the same
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approach as in Ref. �14�, the superposition of the soliton and
the PW is considered

u = us + upw. �4�

Substitution of Eq. �4� in the NLS Eq. �1� results in a non-
linear term of the form

�u�2u = �us�2us + us
2upw

* + 2�us�2upw + 2us�upw�2 + upw
2 us

*

+ �upw�2upw. �5�

By neglecting terms that are second and third order in upw we
obtain the following perturbed NLS equation:

i
�us

�Z
+

1

2

�2us

�X2 + �us�2us = R�us,upw� , �6�

where

R�us,upw� = − �us
2upw

* + 2�us�2upw� �7�

is the perturbation term, which takes into account the modi-
fication of soliton propagation due to the presence of a PW.
Applying a standard quasiparticle approach based on the
perturbed-IST method �19,20�, we obtain the following dy-
namical system governing the evolution of the soliton pa-
rameters, under propagation:

d�

dZ
=

��2

2 �
n=−�

+�

an sech��n�

2
���n

2 + 1�sin�An� , �8�
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cos�An� , �11�

where �n= �kn−�� /� and An= �kn−��X0+ �1/2�kn
2Z+�−�n.

Equations �8�–�11� define a nonautonomous system of two
degrees of freedom. It explicitly describes the effect of each
spectral component of the PW on the soliton evolution dy-

namics. At this point it must be emphasized that the system
has been derived under no assumption on the length scales of
the soliton width and the PW period. As a result, the equa-
tions describing soliton width and velocity evolution are
coupled, in contrast to the cases where the soliton width
differs significantly as compared to the PW period �16–18�.
The latter cases result in a much simpler one-degree-of-
freedom autonomous dynamical system. They, however, ex-
clude the applicability of the results to comparable length
scales, where complex dynamics are expected to occur due to
resonances between the longitudinal wave number of the
soliton ��1/2��2� and the wave numbers of the PW Fourier
components ��1/2�kn

2�. Although the dynamical system
�8�–�11� applies for any kind of PW, for illustrative purposes,
we consider in the following, a PW having a rectangular
amplitude profile �shown in Fig. 1� and a transverse velocity
k.

For the case of zero transverse velocity k=0, the PW car-
ries no momentum and its effect on soliton propagation re-
sults in steadily breathing solitons undergoing amplitude
�width� and chirp oscillations �21�, while for large PW peri-
ods �with respect to soliton width�, soliton “swinging” with
zero average transverse velocity has been shown to occur
�16�. More interesting �from the point of view of potential
applications to reconfigurable soliton control�, is the case k
�0 on which we are focusing in the rest of this work. In this
case the PW can transfer momentum to the soliton leading to
controllable drift and steering of the latter �14,15�. Consid-
ering �without loss of generality� a zero initial soliton trans-
verse velocity �=0, the presence of the PW results in soliton
dragging by the dynamically evolving PW-induced lattice. In
the following, a soliton of unitary amplitude �=1 initially
centered at the origin X0=0, is considered. The dependence
of the PW-induced soliton mean transverse velocity ��� on
the PW parameters, namely, its amplitude �	�, spatial ampli-
tude period �T�, duty cycle �dc�, and velocity �k� is studied.

The PW can be affected due to the presence of a soliton
through the mechanism of the modulational instability �MI�.
Each one of the discrete spectral components of the PW is
associated with a finite bandwidth where the MI can take
place. If the spectral content of the soliton falls into these
areas and, at the same time, leads to a considerable growth

−T/2 0 T/2
X

−a/2 

a/2 

dc×T

FIG. 1. Periodic wave with a rectangular amplitude profile of
amplitude a, period T, and duty cycle dc.
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rate, then the PW is significantly distorted. This can actually
be avoided by restricting the amplitude of the PW to small
values �15,22�. The spectral range, where each spectral com-
ponent �kn� of the PW undergoes MI, is centered around kn

and its width is 
k=2an
2. On the other hand, the spectral

content of the soliton �with a zero initial �Z=0� transverse
velocity, as it will be considered in the following� is centered
around the origin with a width that is inversely proportional
to its temporal width �1/n�. Thus, it is possible to prevent MI
and the associated PW deformation by appropriately choos-
ing the PW velocity �which results in a shift in all kns�, the
soliton width, and the PW amplitude. Moreover, even for the
case where a spectral component of the soliton falls into the
wave number range of the MI, the corresponding growth rate
has a finite value, so that the effect of MI can still be small
rendering the laminar propagation distance suitable for po-
tential applications in optical devices.

In the following, small amplitude PWs are considered.
This is a basic requirement for the application of the pertur-
bation method and, furthermore, ensures a very limited PW
deformation due to the superposition of one or two solitons;
the initial conditions �Z=0� which are fed into the full nu-
merical simulations of the original NLS equation consist of a
PW superimposed on one or two such solitons. It will be
shown that the results thus obtained are in fact in good agree-
ment with the perturbation method which is based on the
assumption of a fixed �unaffected� PW.

Figure 2 depicts soliton propagation for the cases of a PW
having 	=0.1, T=4, dc=0.5, and k=1�a ,c ,e� ,2�b ,d , f�. It is
evident that results obtained via direct numerical integration
of the NLS Eq. �1� are in good agreement with the results
provided by the perturbation analysis, with respect to both
soliton displacement as well as soliton amplitude oscilla-
tions. The latter are compared in Figs. 2�e� and 2�f�, where
the fast amplitude oscillations shown in results obtained with
direct numerical integration are due to the fact that the dy-
namically evolving PW is superimposed to the soliton am-
plitude.

The mean soliton velocity ��� is expected to depend
strongly on the initial soliton position with respect to the PW.
As shown in Fig. 3�a�, depending on X0, soliton can have
positive or negative transverse velocity. The dependency on
X0 is symmetric with respect to the origin �due to the sym-
metry of the PW� and it is periodic with a period that differs
from the PW amplitude period T due to the nonzero PW
transverse velocity. In comparison with purely sinusoidal PW
�14�, this dependence on X0 is more complex, with more
local extrema within a period. Moreover, these extrema are
not symmetric with respect to zero, meaning that the specific
PW parameter selection renders one direction more prefer-
able than the other. The duty cycle �dc� of the PW is also
shown to determine both the amplitude and the sign of soli-
ton mean transverse velocity ��� as illustrated in Fig. 3�b�.
The limiting cases dc=0 and dc=1 correspond to purely
sinusoidal PW of opposite sign and the results are in accor-
dance with Ref. �14�. The PW transverse velocity �k� is also
crucial for the soliton velocity ���, as shown in Fig. 3�c�. The
corresponding curve is antisymmetric with respect to the ori-
gin, meaning that opposite PW velocities induce opposite

soliton velocities. This result is in agreement with the case of
a sinusoidal PW in both one-dimensional �14� and two-
dimensional�15� media. However, unlike these cases where it
was shown that the single maximum soliton velocity is
achieved for k
�−1, in our case several local extrema are
present due to the more complicated form of the PW. The
sign of soliton velocity can be different even for two PW
velocities with the same sign. Finally, the effect of the spatial
period of the amplitude of the PW on the soliton velocity is
depicted in Fig. 3�d�. In all cases, it is shown that control-
lable soliton steering can take place by varying a specific PW
parameter while keeping the rest constant. Moreover, the
quasiparticle perturbation method and the resulting dynami-
cal system �Eqs. �8�–�11�� are shown capable of providing
accurate results as compared with results from the numerical
integration of the original model �1�.

III. TWO-SOLITON INTERACTIONS

In the following we consider the effect of a PW on the
interactions between two initially well-separated solitons. In
order to apply the quasiparticle perturbation method, we con-
sider the superposition

u = us
�1� + us

�2� + upw, �12�

where us
�i�, i=1,2 and upw are given by Eqs. �2� and �3�,

respectively. By substituting Eq. �12� in Eq. �1� and separat-
ing terms on the basis of the degree of overlapping, as in the
case where only mutual soliton interactions �with no PW� are
studied �20�, the following equations are obtained:

i
�us

�i�

�Z
+

1

2

�2us
�i�

�X2 + �us
�i��2us

�i� = R��i��us
�i�,us

�3−i�,upw�, i = 1,2,

�13�

where

R��i��us
�i�,us

�3−i�,upw� = − ��us
�i��2�us

�3−i��* + 2�us
�i��2us

�3−i��

+ R�i��us
�i�,upw� , �14�

with R�i��us
�i� ,upw� defined as in Eq. �7�. These equations gov-

ern soliton evolution, as modified due to their mutual inter-
action as well as the presence of the PW. The application of
the standard perturbation method in Eq. �13� results in the
following dynamical system, governing the evolution of soli-
ton parameters under propagation:

d��i�

dZ
= �− 1�i+14Utot

3 e−Utot
X sin�
��

+
����i��2

2 �
n=−�

+�

an sech��n
�i��

2
����n

�i��2 + 1�sin�An
�i�� ,

�15�
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d��i�

dZ
= �− 1�i+14Utot

3 e−Utot
X cos�
��

−
����i��2

2 �
n=−�

+�

an�n
�i� sech��n

�i��

2
����n

�i��2

+ 1�sin�An
�i�� , �16�

dX0
�i�

dZ
= − ��i� − 2Utote

−Utot
X sin�
��

−
�

2 �
n=−�

+�

an sech��n
�i��

2
�

��−
�

2
tanh��n

�i��

2
����n

�i��2 + 1� + 2�n
�i��

�cos�An
�i�� �17�

FIG. 2. Soliton displacement �steering� and amplitude oscillations under interaction with a PW of rectangular profile. ��a� and �b�� are the
respective 3D plots of ��c� and �d��. A thick line depicts results from the perturbation method; 	=0.1, T=4, dc=0.5, and ��a�, �c�, �e�� k
=1, ��b�, �d�, �f�� k=2.
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d��i�

dZ
=

1

2
����i��2 − ���i��2� + X0

�i�d��i�

dZ

− 2UtotKtote
−Utot
X sin�
�� + 6Utot

2 e−Utot
X cos�
��

+
���i�

2 �
n=−�

+�

an sech��n
�i��

2
���n

�i��

2
tanh��n

�i��

2
�

����n
�i��2 + 1� + 2�cos�An

�i�� , �18�

where �n
�i�= �kn−��i�� /��i�, An

�i�= �kn−��i��X0
�i�+ �1/2�kn

2Z
+��i�X0

�i�+��i�−�n, 
�=Ktot
X+��1�−��2�, ��i�=��i�−��i�X0
�i�,


X=X0
�1�−X0

�2�, Utot= ���1�+��2�� /2, Ktot= ���1�+��2�� /2.
In the following, we are focusing on the cases where the

interaction between two solitons can be qualitatively altered
due to the presence of a PW. Conditions under which a
strong soliton interaction can be either prevented or pro-
voked because of the presence of the PW are investigated.
For the case of zero PW transverse velocity k=0, the PW
does not lead to a qualitative differentiation of soliton inter-

actions: When two solitons do not interact with each other,
the PW simply results in amplitude oscillations of the soli-
tons. When the solitons collide for a zero PW, they still col-
lide, but in a different propagation distance, under the pres-
ence of a PW. However, the case of a PW having nonzero
velocity k�0 is shown to have a much more drastic effect on
soliton interactions.

The case of propagation of two solitons initially located at
X0

�1�,�2�=3.5,−3.5 is shown in Fig. 4�a� where there is no PW
and the mutual soliton interaction result in attraction and
elastic collision. The presence of a PW, having 	=0.05, T
=15, dc=0.5, and k=0.5, is shown capable of reducing mu-
tual soliton attraction and completely preventing collision as
illustrated in Figs. 4�b� and 4�c�. However, the effect of the
PW depends strongly on its parameters, that is, for some
parameter choices the collision is not prevented �Figs. 4�d�
and 4�e�� or the two solitons just “touch” and separate �Figs.
4�f� and 4�g��. For the cases where the two solitons collide or
approach very close, the results of the perturbation method
deviate significantly from direct numerical simulations �Figs.
4�d� and 4�f��. This is because the separation of the nonlinear
term on the basis of the degree of overlapping and the cor-

FIG. 3. Soliton mean transverse velocity ����� dependence on the PW parameters. A solid line depicts results from the perturbation
method while black dots represent results from direct simulations: 	=0.1, T=4, dc=0.5, and k=0.5. Dependence is on �a� X0, �b� dc, �c� k,
�d� T.
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responding Eq. �13� become meaningless. However, it is re-
markable that, even in these cases the collision distance is
well predicted by the perturbation method.

Apart from preventing soliton collision, the presence of a
PW can also enhance mutual soliton interaction in a symmet-
ric or asymmetric way. As shown in Figs. 5�a�–5�i�, a PW,
with 	=0.1, T=4, dc=0.5, and k=0.5, can cause symmetric
�Figs. 5�b� and 5�c�� or asymmetric �Figs. 5�e� and 5�f� and
Figs. 5�h� and 5�i�� attraction between the two solitons, de-
pending strongly on the relative initial soliton positions, with
respect to the PW.

IV. SUMMARY AND CONCLUSIONS

In conclusion, spatial soliton dynamics in optically in-
duced photonic lattices have been studied. The PW induced
potential is shown capable of drastically affecting the evolu-
tion of parameters of the initial beams, such as the transverse
velocity and the amplitude. On the other hand, soliton mutual
interaction can either be increased or reduced by appropri-
ately selecting the PW-induced photonic lattice features such
as the period, the amplitude, the relative position with re-
spect to the soliton beam center, and the pulse duration in
case of rectangular PW lattice. The quasiparticle perturbation

FIG. 4. Two-soliton interac-
tion �X0

�1�,�2�=3.5,−3.5� under the
presence of a PW having 	=0.05,
dc=0.5, and k=0.5. �c�, �e� and
�g� are the respective 3D plots of
�b�, �d� and �f�. A thick line de-
picts results from the perturbation
method. �a� No PW is induced.
��b� and �c�� T=15 complete colli-
sion avoidance. ��d� and �e�� T=1
collision is not prevented. ��f� and
�g�� T=20 close approach.
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approach is shown to provide an accurate description of soli-
ton evolution under the presence of a PW in the case of a
single soliton as well as in the case of two-soliton interac-
tions. The results of the perturbation method apply to any
kind of linear PW, thus providing a useful tool for efficient
PW design and parameter selection in order to achieve the
desirable soliton evolution, in terms of dynamically reconfig-

urable all-optical control.
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FIG. 5. Two-soliton mutual interaction enhancement under the presence of a PW having 	=0.1, T=4, dc=0.5, and k=0.5. ��c�, �f�, �i��
are the respective 3D plots of ��b�, �e�, �h��. A thick line depicts results from the perturbation method. Symmetric attraction case for
X0

�1�,�2�=9.0,−5.0 �a� no PW and ��b� and �c�� PW present. Asymmetric attraction case for X0
�1�,�2�=10.0,−5.0 �d� no PW and ��e� and �f�� PW

present. Asymmetric attraction case X0
�1�,�2�=9.0,−4.1 �g� no PW and ��h� and �i�� PW present.
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